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Introduction :

Lzt ! denote the fundamental lattice in the euclidean plane E, consisting
of all points with integral coordinates in some preassigned cartesian co-
ordinate system of F,. A non-empty subset y of E, will be called an I-polygon
if, firstly, it admits a finite simplicial coveringt by rectilinear simplexes
whose vertices belong to ! and, secondly, it is pure of dimension two. It
follows in particular that I-polygons are closed subsets of the plane. It is
well known] that the area A(y) of an l-polygon y whose boundary is a
Jordan curve y is given by the formula

A(y) = Uy)—3Uy)—1, (1)
where I(y) and l(y) denote the number of points of I which belong respec-
tively to y and its boundary y, provided the fundamental parallelogram
is of unit area. '

In this note we discuss certain generalizations of (1) and, in particular,
we obtain in Theorem II a formula, which is in many ways analogous to
the one above, for the volume of a polyhedron of a particular type in three-
dimensional euclidean space E;. The class of polyhedra for which our
formula is valid includes as a special case the class of convex polyhedra
whose vertices have integral coordinates in some cartesian coordinate
system in E;. The formula for convex polyhedra is stated explicitly in
Theorem I. That this formula must embody something more than the
direct extension of (1) which one might at first anticipate is clearly illus-
trated by the following example.

Consider thedetrahedron + whose vertices, in some cartesian coordinate
system of E,, are the points (0,0, 0), (1,0, 0), (0,1,0), and (1, 1,r); » being
a positive integer. The four vertices of 7 belong to the lattice consisting
of all points with integral coordinates and furthermore, as is easily verified,
this lattice contains no other points of . Thus = is one of the simplest
convex polyhedra of the type we wish to consider and it has the somewhat

t An account of the idea of a simplicial covering may be found, for examplo, in
Lehrbuch der Topologie, by H. Seifert and W. Threlfall (Chelsea Publishing Company,
1947).

1 For a proof of this in the case when A = } see Hardy and Wright, The Theory
of Numbers, 3rd edn. (Oxford, 1954), chapter iii, ‘A Theorem of Minkowski’.
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disturbing property that, by suitable choice of the integer r, its volume
may be made as large as we please without altering the numbers of lattice
points lying on its boundary and in its interior.

The way in which we get over this difficulty is to bring into consideration
not only the basic lattice of points with integral coordinates but also a
secondary lattice which, in the simplest case, consists of all points each
of whose coordinates is a multiple of 4. We feel that the interest of our
results lies in some respects not so much in the form of the formula we
obtain for the volume of a polyhedron as in the fact that the intro-
duction of a secondary lattice enables us to obtain such a formula at all.
We return to this question in the concluding section of this paper, and
we believe that we do obtain there not only a partial explanation of the
existence of our formula for the volume of polyhedra in three-dimensional
space but also some indication of what might be expected in an analogous
investigation in space of dimension greater than three.

An interesting fact which emerged, as we shall explain later, from our
initial attempts to obtain a formula for-the volume of a polyhedron in three
dimensions is that in some cases, including in particular the case of a
convex polyhedron whose vertices are lattice points, there exists a certain
identical relation connecting the numbers of points which the boundary
of a given polyhedron has in common with each of the two lattices intro-
duced above. This is in some way a reflection of the fact that in the case
of these special polyhedra the secondary lattice provides, as it were, a
certain amount of redundant information. This question is clarified in the
‘footnote to Theorem III.

We would mention finally, not so much to put it on record for the sake
of its own interest as to give an indication of the direction in which we
turn for our generalization in three dimensions, that formula (1) admits
an extension whose range of validity covers all I-polygons in E, and not
merely those whose boundaries are Jordan curves. In fact, if y is an
arbitrary l-polygon of area A(y) and y denotes its boundary, i.e. set of boundary
points, and if l(y) and l(7) denote the number of points of 1 lying respectively
on y and y, then

Aly) = {Un+N}—HIE) +N ), (2)

where N(y) and N(y) denote the respective Euler—Poincaré characteristics of
yandy. Here and throughout this paper the Euler—Poincaré characteristic
of any n-dimensional complex admitting a finite simplicial covering con-
taining «, simplexes of dimension v, 0 < v < n, is taken to be the integer

n

> (—1)v+lo,. A proof that the Ewnler-Poincaré characteristic is not

v=0 )
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dependent upon the particular simplicial covering chosen may be found,
for example, in Lehrbuch der Topologie to which reference has already been
made in a footnote.

The validity of (2) may be deduced from that of (1) without difficulty
by regarding the given l-polygon as a union of l-polygons the boundary
of each of which is a Jordan curve, and then proving that the expression
on the right of (2) enjoys an additive property with respect to the union
of any two I-polygons having an intersection of dimension at most one.
It hardly seems necessary to give a detailed proof of this result here, and
although in what follows we shall have occasion to make use of (1) we shall
not require the more general formula (2). However, it may be worth

remarking that if P is any point of the plane and we define m(y, P) by

m(y, P) = lim 2209,
e—0 TTE

where A(y, P,¢) denotes the area of the region of the plane common to
both y and a circle of radius € and centre P, then (1) and (2) can each be

written in the form Aly) = le m(y, P). (3)
. €

For, when y is a Jordan curve it is fairly evident that the right-hand sides
of (1) and (3) are equal. Further, it is clear that each side of (3) is additive
with respect to the union of any two I-polygons having an intersection of
dimension at most one, and this makes it easy to prove the equivalence
of (2) and (3) for any I/-polygon and hence to provide a simple method of
establishing (1). :

I am indebted to the referee for a number of helpful suggestions and in

particular for an alternative version of my original proof of the formula
(10), basing it on his Lemma III.

1. Preliminary definitions

We fix, once and for all, in a euclidean space Ej, a system of cartesian
coordinates such that the unit cell is of unit volume. This means that we
choose three arbitrary linearly independent vectors such that the parallele-
piped spanned by them is of unit volume and we define coordinates with
respect to this triplet of vectors. The set of points with integral coordinates
forms the fundamental lattice which throughout this paper will be denoted
by L. For each positive integer » we define a further lattice L,, as follows.
The point (a, b, ¢) belongs to L, if and only if the point (na, nb, nc) belongs
to L.. We note that with this definition L, coincides with L.

A subset I' of E; will be called a singular polyhedron if, whenever it 1s

not empty, it admits a finite rectilinear simplicial covering, that is, a finite .
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simplicial covering by rectilinear simplexes. The Euler—Poincaré charac-
teristic of a singular polyhedron I' will be denoted by N(I') and its volume
by V(I'). The symbol L, (I') will be used to denote the number of points
of L, which belong to I', and we define, for any singular polyhedron I" and
positive integer 7, a function M, (I') as follows,

We now define some special types of singular polyhedron.

The convex hull of a finite set of points in E; will be called a convex
polygon provided this convex hull is of dimension two. The intersection
of a convex polygon y with one of its planes of support in Ej is called
respectively an edge or vertex of y according as this intersection is of dimen-
sion one or zero. The convex hull of a finite set of points in E; will be
called a convex ‘polyhedron provided this convex hull is of dimension three.
The intersection of a convex polyhedron I' with one of its planes of support
is called respectively a face, edge, or vertex of I' according as this inter-
section is of dimension two, one, or zero. The boundary (i.e. set of boundary
points) of a convex polyhedron I' is the union of its faces and will be denoted
by I'. IfI'is a convex polyhedron, the faces of I' are convex polygons, each
edge and vertex of I' is an edge or vertex of at least one of the faces of I,
and conversely, each edge and vertex of any face of I is also an edge or
vertex of I' itself. Lastly, it is well known that every convex polyhedron
* admits a finite rectilinear simplicial covering and so is a singular polyhedron
in the sense defined above. Actually we shall shortly be proving a slightly
stronger result than this. We now turn to some definitions of a somewhat
different nature. A

A subset IT of E; will be called an L-polyhedron if:

(i) I is a non-empty singular polyhedron,
(ii) II is pure of dimension three, and
(iii) ITadmits a rectilinear simplicial covering all of whose vertices belong
to the lattice L.
The boundary I1 of an L-polyhedron II is the set of boundary points of II,
in the set-theoretical sense. As a particular case of an L-polyhedron we
have an L-tetrahedron; this is simply a 3-simplex each of whose vertices
belong to L.}
A subset 7w of E, will be called a singular L-surface if:
(i) = is a singular polyhedron,
(ii) = is of dimension two at most, and
(iil) =, if not empty, admits a rectilinear simplicial covering all of whose
vertices belong to L.

1 Here, as clsewhero in this paper, simplexes are understood to be closed.

a 'T 'LS6T ‘Xyv209rT

j wouy

35UB017 SLOLUILLIOD AANEaID 3jqedt|dde ay Aq pausenof are sanse WO ‘3N Jo Sajni Joy Akliq 1 auljuQ A3|IAA UO (SUO N IPLOI-PUE-SLLIBIALD A3 [IM° Aelq | pU T UO//:STNY) SUORIPUOD pUe SWB | Y} 39S *[5202/50/22] Uo Ariqi auljuQ AB|IAN Xn'de xo@) BquBLu-<Uy (0aqusS> Aq 82€'T'2-€SAW d/ZTTT 0T/I0p/L0d A3 1M A.



382 J. E. REEVE
- A subset 7 of E; will be called an unbranched L-surface if:

(1) = is a singular L-surface,
(ii) = is non-empty and pure of dimension two, and
(iii) 7= admits a rectilinear simplicial covering K whose vertices belong
to L and which has the additional property that none of its 1-
simplexes are incident with more than two of its 2-simplexes.
The boundary of the unbranched L-surface = will be denoted by = and is
defined as the union of all the 1-simplexes of the covering K which are
incident with only one 2-simplex of K.t As a particular case of an un-
branched L-surface we have an L-triangle' this is simply a 2-simplex whose
three vertices belong to L.
A subset p of E; will be called a singular L-path if:
(i) p is a singular polyhedron,
(ii) p is of dimension at most one, and
(iii) p, if not empty, admits a rectilinear simplicial covering all of whose
vertices belong to L. :
As a special case of a singular L-path we have an L-segment; this is just a
1-simplex whose end-points belong to L.

2. Statement of the theorems
With the definitions and notations introduced in § 1 we can now state
the three following theorems.

THEOREM 1. Let n be an integer greater than unity and let T be any convex
polyhedron all of whose vertices belong to the lattice L. Then

2(n—n(n+1)V(T) = 2{L,(T)—nL(C)}—{L,(T)—nLT)}, (4
and, in addition, we have the following relation
L,(T)—ntL(T) = 2(1—n?2). (5)

The hypotheses of this theorem include the condition that n be greater
than unity, but we.note that both (4) and (5) are trivially satisfied if we
put » = 1.

As we shall see later, the relations (4) and (5) are special cases of more
general ones of which the two following theorems give an explicit account.

THEOREM II. Let n be a positive integer and let I1 be any L-polyhedron.
Then 2(n— )n(n+1)V(IT) = 2M,(I1)— M, (). (6)

t It would scem to be out of place to givo hero a proof of tho fact that ‘boundary’
in this sensc does in fact not depend upon the choice of the covering K.
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THEOREM III. Let n be a positive integer. If m is any unbranched L-
surface thent '

2L, (m)—2n2L(n)+2(1 —n?)N (n)+nL,(7)—nL(w) = 0. (7
These theorems are trivially verified if n = 1. However, if n'> 1 the

formula (6) would enable us to calculate the volume of II. '
Before we prove these theorems it may perhaps be of interest to mention

that the formulae of Theorem I were originally obtained in the case when .

n = 2 by assuming that the volume of a convex polyhedron whose vertices
belonged to L could be expressed as a linear combination of seventeen
terms which ardse as follows. The points of L, can be divided into four
classes depending upon the number of their three coordinates which are
integers, the points of these classes may again be divided into four groups

according as to whether they lie in the interior of the given convex poly- -

hedron, in the interior of one of its faces, in the interior of one of its edges,
or finally, at one of its vertices. The seventeenth term was an additional
constant. Three of these terms can, of course, be discounted at once in
view of the fact that the vertices of the polyhedron belong to L and so have
all their coordinates integral. The coefficients of the remaining terms were
found by substituting values found for various simple convex polyhedra
and solving the resulting simultaneous linear equations. The formula for
the volumeé which was obtained in this way was equivalent, to

2(n—1)n(n+1)V(I') = 2{L,(T)—nL(l)}—
—{L,(T)=nL(T)}+XL,(T)—n2L(T)—2(1 —n?)},

where A gppeared to be an arbitrary parameter. This is, of course, quite in
accordance with the assertions contained in Theorem I, but we mention it
for what it is worth because it shows how we were led to find the relation
(6) in addition to the formula (4) for-which we were looking.

3. Proof of Theorem I

In this section we show that Theorem I is in fact a consequence of
Theorems II and III.

In the first place we notice that if I' is a convex polyhedron whose vertices
belong to L then N(I') = —1, N(T') = —2, and the boundary of T is the
empty set, T itself being, as we shall see in a moment, an unbranched
L-surface. It is now easily verified that if we replace IT by I' in formula
(6) the latter reduces to (4), and if we replace-w by T in (7) then the latter

t Wo would point out that if an L-polyhcdron II has a boundary 11 which is an
unbranched L-surfaco then Theorem I1I is applicablo to 11 and furnishes ‘between
II and L a rolation to which wo have already made roforonce.
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384 J. E. REEVE

reduces to (5). Hence, in order to deduce Theorem I from Theorems I1
and III, it will be sufficient to show that if I is a convex polyhedron all
of whose vertices belong to L then T' is an L-polyhedron and its boundary
T is an unbranched L-surface. We shall in fact prove the slightly stronger

Lemma I. If T is a convex polyi;edro'n' all of whose vertices belong to the
lattice L then I' admits at least one rectilinear simplicial covering the set of
whose vertices coincides with the set of vertices of T'.

This lemma certainly ensures that I' is an L-polyhedron and, if we
remember that the boundary of a convex polyhedron is a homeomorphic
image of a 2-sphere, it also implies that T is an unbranched L-surface.

Proof of Lemma I. Let y be any face of the convex polyhedron I'. Since
all the vertices of I' belong to L it follows that all the vertices of the convex
polygon y also belong to L. Thus if we join one vertex of y to all the remain-
ing vertices and edges of y with which it is not incident we obtain a triangula-
tion of y the vertices of which coincide with the vertices of y. We have
already mentioned that each edge and vertex of I' is an edge or vertex of
at least one face of I' and conversely, each edge and vertex of any face of
I' is also an edge or vertex of I" itself. It therefore follows that if we triangu-
late each face of I' in the way just described then we obtain a simplicial

covering of the boundary T of I' and the set of vertices of this covering °

coincides with the set of vertices of I'. Let P be any vertex of I', and let

K be a covering of T, constructed as above, but in such a way that the

triangulation of any face of I incident with P is formed by joining vertices
and edges of that face to P. A simplicial covering of I of the type required
by the lemma can now be obtained by joining P to each simplex of K
with which it is not incident. This completes the proof of Lemma I.

We have thus seen that Theorem I is a consequence of Theorems 1I and
IIT and it now only remains to establish these two latter theorems. We
devote the next section to the proof of Theorem III.

4. Proof of Theorem III
A preliminary lemma

We shall require both in this and a subsequent section the following
lemma,

Lemma II. Ifnbea positive integer and p a singular L-path thenM,(p) = 0.

Proof of Lemma I1. Suppose p, and p, to be two singular L-paths whose
intersection p*, if not vacuous, consists of a finite set of points belonging
to L. The point set p, U p, is again a singular L-path which we shall denote
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ON THE VOLUME OF LATTICE POLYHEDRA 385
by p,o. It is easily verified that

(Po) = 1L(p1)+Ln(p2)—L1L(p='f):
L(po) = L(p,)+ L(p,)— L(p*),
and N(po) = N(p,)+N(py)—N (P

).
Hence -Mn(Po) n(pl)+ﬂln(p2) (p*)

Now, by definition, - .
M, (p*) = Ly,(p*)—nL(p*)—(n—1)N(p*),

and since p* is a discrete set of, say, k points (0 < k& < o) belonging to L,

which means that L,(p*) = L(p*) = —N(p*) = k, it follows that

M, (p*) = 0.
Thus M, (po) = M, (p,)+ M, (p,)-

By repeated application of this last result we can reduce the proof of the
lemma to a trivial verification that the function M, vanishes for the special
singular L-paths consisting either of the empty set, of a single point of L,
or of a single L-segment.

The additive property of the function G, ()

If n is a positive integer and = is an unbranched L-surface we define

the function G, (n) as follows

@,(m) = 2L, (m)— 202 L(m) +-2(1—n2) N (m) +-n.L, (7) —nL(7).
Theorem III then states that @, (7) = 0. As a first step towards proving
this theorem we shall show that G, has the following additive property.

Let an unbranched L-surface my be the union of two unbranched L-surfaces
m, and m, whose intersection is a stngular L-path lying on each of 7, and ,,
the boundaries of m, and m, respectively. The function G, n being a positive
tnteger, then enjoys the property that

Gu(”'o) = Gn(wl)'l_Gn(ﬂz)'

Proof. The intersection =, N 7, is a, possibly vacuous, singular L-path
which we shall denote by p. Define p* = #,N p, where, in accordance
with the notation introduced earlier, 7, is the boundary of =,.

It is easily verified that

(TrO) = Ln(—rl)+L ( ) Ln(P):
L(mo) = L(m,)+ L(m,)— L(p),
(

N(mg) = N(m)+N(m,)—N(p),
Ly(#) = Ly, (7y)+ Ly (7y)— 2L, (p)+ L, (p*),
and L(#g) = L(#,)+ L(#,)—2L(p)-+ L(p*).
Hence Gp(’”o) = G, (m)+ G, (7)) — H,(p, p*),
5388.3.7

o)
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386 - J. E. REEVE
where

H,(p, p*)= 2(n+1)L,(p)—.
—2n(n+-1)L(p)—2(n*—1)N(p)—nL,(p*)+nL(p*).

Now the point set p*, if not empty, consistst of a finite number of points
belonging to L and so L,(p*) = L(p*). From this it follows that

and so in virtue of Lemma II we can conclude that Hn(p, p*) = 0 and
hence that Gilmo) = Glmy)+Gfmy).

Reduction to fundamental L-triangles

We may use the additive property that we have just proved to replace
Theorem III by an equivalent but much simpler statement concerning
L-triangles. In fact, we know that an unbranched L-surface = admits a
finite simplicial covering K whose vertices belong to L. Let o be one of
the 2-simplexes of K and suppose that #—o is not empty. o is then an L-
triangle and the closure, 7, of the set #—o is an unbranched L-surface.
Further, =, 7, and o satisfy the hypotheses made on =y, 7,, and =, respec-
tively in the statement of the additive property of G, in the previous
paragraph. The 2-simplexes of K may be removed one by one in this
manner and thus, since K is finite, we see that it will only be necessary,
in order to establish Theorem III, to prove that @, (o) = 0 for an arbitrary
L-triangle 0. We can in fact do a little better than this if we introduce
what may be called a fundamental L-triangle, that is, an L-triangle which
contains no points of L other than its three vertices. For, if ¢ is an arbitrary
L-triangle, it will contain at most a finite number of points of L and if it
is not fundamental it will contain at least one point, say P, of L distinct
from any of its three vertices. By joining P to each of the vertices and
edges of o with which it is not incident we obtain a simplicial covering of
o each of the 2-simplexes of which contain fewer points of L than ¢ does.
Continuing the subdivision in this way leads to a simplicial covering of o
in which every 2-simplex is a fundamental L-triangle. By using the additive
property of G, and the same arguments as above we arrive at the con-
clusion that in order to prove Theorem III it will be sufficient to verify
that @,(c) = 0 for an arbitrary fundamental L-triangle o.

t+ Any point P of p which does not belong to L must belong, in virtue of our
.definitions, to both the interior of an edge of some 2-simplex o, of some simplicial
covering of m,, and the interior of an edge of some 2-simplex o, of some simplicial
covering of r,. Since p is a singular L-path and P does not belong to L it follows that
¢, and ¢, have a one-dimensional intersection and so P must be an interior point of .
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ON THE VOLUME OF LATTICE POLYHEDRA 387

Proof for fundamental L-triangles

We suppose that (z,v,z) are the current coordmates of a point of E; in
the preassigned cartesian coordinate system which determines the lattice L.
As usual, 7 is a fixed positive integer. If ¢ is an arbitrary fundamental
L-triangle of E; then the numbers L, (o), L(s), N(0), L,(5), L(¢) and hence
also G, (o) remain invariant under unimodular transformations of E;. We
can therefore without loss of generality restrict our attention to a funda-
mental L-triangle o, lying in the plane z = 0 and having as vertices the
three points (0, 0, 0), (p,0,0), and (g,7,0); p, ¢, and r being integers satis-
fying the inequalities 0 << p and 0 < ¢ < r. Now since o is a fundamental
L-triangle we see at once that p = 1, for otherwise the edge of o, joining
the vertices (0, 0, 0) and (p, 0, 0) would contain points of L other than these
two vertices. In addition, again from the fact that o, is fundamental, we
can deduce with the aid of formula (1) that the area of o, is 4. This implies
that » = 1 and hence that ¢ = 0. Thus the vertices of o, must be the
points (0,0, 0), (1,0,0), and (0,1,0). It is now easily verified that

L( 0) 3, Ln(Uo) = %(n+l)(n+2)’
L(sy) = 3, L,(,) = 3n, N(op) = —1,
and hence that G, (g,) = 0. This completes the proof of Theorem III.

Il

5. Proof of Theorem II

Although the details of the proof of Theorem Il are somewhat more
involved than those of the preceding proofs of Lemma II and Theorem III
the same general pattern can be observed. That is to say, we first establish
an additive property and then use this to reduce the proof of the theorem
to a verification for a particularly simple polyhedron. We start by proving
the additive property.
The additive property of Q,,(IT)

Given an L-polyhedron II and positive integer n we define functions
W (IT) and Q,(IT) as follows

W.(I) = 2M,(I1)— 24, (IT),
and Q,(IT) = 2(n—1)n(n+1)V (I1)— W, (I1).
Theorem II then asserts that Q, (I1) = 0.
The first thing we shall show is that Q,(IT) enjoys the following additive
property.
If an L-polyhedron 1, ts the union, 11, U Il,, of two L-polyhedra I, and
IT, whose, possibly vacuous, intersection is a singular L-surface, then

Qn(no) = Qn<nl)+gn(n2)'
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Although they are in fact contained implicitly in the foregoing hypotheses,
for the sake of simplicity, we prefer to adjoin to the above the following
additional assumptions. Firstly, we assume that the singular L-surface
7 = I1; N II, lies on each of the boundaries I, and I1, of IT, and II, respec-
tively; and, secondly, we assume that »* =I,n= =M nM,nl, is a
singular L-path, 1, being, as in our usual notation, the boundary of II,.
To prove the additive property of Q, we note first of all that the above
hypotheses enable us to verify without difficulty that
L,(Iy) = L;(I,)+ Ly (I5)— Ly (),
L(ITy) = L(I1,)+ L(ITy) — L(m),
N(Ilp) = N(I1;)+N(Il,)—N(m),
L'n(no) = le(n1)+Lpz(n2)—2L'n(7r)+Ln(77*)’

L(Ho) = L(nl)'l' L(ﬁz)_2L(77)+L("*):

and N(I,) = N(I)+N(Tp)—2N ()4 N(=*).
Thus M, (1) = M, (1)) + M, (I1,)— DM, ()

and M, (Ig) = M(11,)+ M, (115)— 2], (m) + M, (=*)

and hence Wo(llg) = W, (I1,) + W, (I1,) — M, (%),

but in virtue of Lemma II M, (=*) vanishes and thus
W (Ily) = Wo(I1) +W,(I1,).

The additive property of Q, now follows at once on account of the fact
that V(Ily) = V(II,)+ V().
Reduction to fundamental tetrahedra

If IT is an arbitrary L-polyhedron then we know that IT admits a finite
rectilinear simplicial covering K whose vertices belong to L. Let = be one
of the 3-simplexes of K. If Il—7 is not empty then II, =, and the closure
of [I—7 are L-polyhedra satisfying the hypotheses made on II,, II;, and
IT, respectively in the statement of the additive property of Q, proved in
the previous paragraph. Furthermore, this process of removing 3-simplexes
from the finite simplicial complex K may be repeated until all the 3-
simplexes have been removed, and at each stage the hypotheses ensuring
the additivity of Q,, are satisfied. Thus in order to establish Theorem I
we have only to verify that Q, (7) vanishes for an arbitrary L-tetrahedron .
If we define a fundamental L-tetrahedron to be an L-tetrahedron which
contains no points of L other than its four vertices then we can reduce
the proof of Theorem II still further. In fact, if 7 is an arbitrary L-tetra-
hedron it will contain at most a finite number of points of L and if it is not
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ON THE VOLUME OF LATTICE POLYHEDRA 389

a fundamental L-tetrahedron it will contain at least one point, say P, of
L distinct from any of its vertices. By joining P to each of the faces, edges,
and vertices of 7 with which it is not incident we obtain a simplicial covering
of 7 each of the 3-simplexes of which contains fewer points of L than = does.
By continuing to subdivide the simplexes in this way we can obtain a finite
simplicial covering of = in which every 3-simplex is a fundamental L-
tetrahedron. By using the additive property of Q, and the same arguments
as already employed above we can conclude that in order to prove Theorem
II it will be sufficient to verify that Q () = 0 for an arbitrary fundamental
L-tetrahedron 7.

Proof for fundamental L-tetrahedra

If  is an arbitrary fundamental .L- te’orahedron and n a fixed positive
integer we wish, in order to complete the proof of Theorem II, to show
that Q,(r) = 0, or more fully, that

2(n—1)n(n+1)V(r) = 2{L,(r)—nL(t)—(n—1)N(7)}

—{Ln(F)—nL(7)— (n—1)N(7)}. (8)

Now since 7 is a fundamental L-tetrahedron we must have L(r) = 4,

L(7) = 4, N(r) = —1, N(7) = —2 and if ¥,(r) denotes the number of

pointsof L, which lie in the interior of r then L ,(v) = L, (7)+ ¥, (7). Finally,

if o is one of the faces of = then since 7 is a fundamental L-tetrahedron o is

a fundamental L-triangle. Thus, as we have seen in the previous section,

L,(0) = 3(n+1)(n+2). Itisalso easy to verify that each edge of 7 contains

exactly n+1 points of L,. From this it follows that

Lo(7) = 4.3(n+1)(n+2)—6(n+1)+4 = 2(n2+1).

We see, therefore, on substituting these values in (8), that we have to verify

that (—Ln(r+ )V (r) = ¥y(r)+n—1)% (9)

Before looking into this last relation more closely we remark that under
a unimodular transformation of F; « will be transformed into another
fundamental L-tetrahedron and that both V(r) and ¥, (r) will remain
invariant. We can therefore make use of & unimodular transformation
to simplify our problem.

We suppose that (z,y,z) are the current coordinates of a point of K, in
the preassigned cartesian coordinate system which determines the lattice
L, and we assume that one of the vertices of = lies at the origin of these
coordinates. There then exists a unimodular transformation which trans-
forms = into a fundamental L-tetrahedron =, with vertices F,(0,0, 0),

F(2,,0,0), Py(py, ¢z, 0), and Py(ps, ¢5,75), where py, ps, g5, P3s 23 and 7, are
integers satisfying the inequalities 0 < p;, 0 < p, < ¢, 0 < Py < 75, and
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0 < g3 < ;. We can, however, be a little more explicit than this for, in
the first place, since 7, is. fundamental, each edge, and in particular the

edge F, P,, of 7, can contain no points of L other than its end-points, thus

P, = 1. Again, the L-triangle F, P, P, can contain no points of L other
than its three vertices and so, in view of formula (1), its area must be %
and hence g, = 1 and p, = 0. It can be shown without difficulty that
the fact that the remaining three faces of 7, are fundamental L-triangles
leads to the conditions

(P3:73) =1, (g573) =1, and (py3+g—1,75) =1,
where, if @ and b are integers not both of which are zero, (a,b) denotes
their greatest common factor. For example, to prove the last of these
conditions we may write (py+gy—1,75) =d and a = (py+g,—1)/d,
¢ = r4/d. Then, since

—(1-14% _% !
(@+1,0,0) = (1= 3+2)1,0,0-2(0,1,0)+ F (o7,

the triangles with vertices

(1) 07 0)) (0: 1, 0)) (p3) qa’ "’3),
and (1,0, 0)) (0,1,0), (a’+1)0’c)

are coplanar L-triangles. So, if the first is to be a fundamental L-triangle,
its area cannot exceed the area of the second L-triangle. But.by projecting
onto the plane x = 0, we see that the ratio of the areas of these two triangles
is the ratio of the areas of the triangles with vertices

(O: 0): (1’0)’ (%sra)’
and (0,0), (1,0), (9,¢),

which is ry/c = d. Hence d = 1 as required. Writing p = p;, ¢ = ¢,, and
r = r; we can summarize these results as follows.

There is a unimodular transformation of E; which carries the given
fundamental L-tetrahedron = into the fundamental L-tetrahedron =, with
vertices (0, 0, 0), (1, 0,0), (0,1, 0), and (p,q,7), where p, ¢, and r are integers
suchthat 0 < p <7, 0 < g < r and (p,r) = (¢,7) = (p+g—1,7r) = 1.

In view of what we have said earlier it is now only necessary, in order
to establish Theorem II, for us to verify that (9) is satisfied by the funda-
mental L-tetrahedron 7,.f Now the volume V(r;) of 7, is /6 and so,

t It might seem at first sight that we could now give a more explicit definition
of 74. In fact, however, this does not appear to be so easy. For instance, one might
be tempted at first to guess that neither p nor ¢ could be greater than unity, however,
the values 2, 5, and-7 respectively for p, ¢, and r give an example of a fundamental
L-tetrahedron for which this supposition is false.
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ON THE VOLUME OF LATTICE POLYHEDRA 391
substituting this in (9), we see that we have only to show that
6, (7o) = (n—1){rn?+ (r—6)n6}. (10)
In order to establish the formula (10) we note first that by homogeneity
Y, (7o) = Yi(7,) where 7, is the L-tetrahedron with vertices
(0,0,0), (n,0,0), (0,n,0), and (np,ng,nr). _
We count the number of points of L in the interior of 7, by determining

separately the number of such points (u, v, w) in the different planes with
constant values for w. For this purpose we need the following lemma.

Lemma III. Let x, y be real numbers and let s be positive. Then the integer
= —2—[a]—[y]—[—z—y—s],

where [x] denotes the greatest integer not exceeding x, is not less than —1 and
the number of points (u,v) with integral coordinates in the interior of the
triangle with vertices (x,vy), (x+s,¥), and (x,y-+s) is 3(1+1).

Proof. As s is positive while x—[z] and y—[y] are non-negative, we have

[—2+[z]—y+[y]—s] < —1,

50 that l= —2—[2]-[y]-[—z—y—s]
= —2—[—z+[z]-y+[y]—s]
= —2—(—1)= —1L
The points (u,v) in the interior of the triangle are the points satisfying
| r<u,
y<w,
and —E—Y—8§ < —u—u.

But there are no points (u,v) with integral coordinates satisfying
r<u<[z]+]1,
nor satisfying y<v<[y]+1,

nor satisfying
—r—y—8 < —u—v < [—x—y—s]+1.

Thus the number of lattice points in the interior of the triangle is the
number of pairs (u,2) of integers.satisfying

and- [—z—y—s]+1 <
Writing u—[z]—1 =, ov—[y]—1=7,
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we see that this is the number of pairs of integers (u’, ') satisfying
w =0, v =0,

and w4 < —3—-[x]——[y]—‘[—-x—y—s],

i.e. w>=0 v=> 0,. and w4 <11,

Since I > — 1, this number is 3/(l+41) as required.

For any integer k, with 0 < k < nr, the plane z = k meets the tetra-
hedron 7, in the triangle with vertices

k k k. nwr—k k
(;P: ;q’ k), (;P r ’ rq:k):
and (k kq+nr k )

So by the lemma the number of points of L in the interior of 7, lying on
the plane z = k is $1,(/,+1) where

I — —o_ I_cp _ ]f _ _I_c _ic _m'—.k
k= ’ rq TP 79

=n—2— [’;p] — [%q] — [——~(p+q— 1)]

Note also that we have [, > —1 by the lemma.
In the special case when % is of the form rs where 0 < s < n we see that
1, reduces to

n—2—sp—sq+s(p+qg—1) = n—s—2.
So the total number of points of L in 7, on these planes z = rs is

z % s(lrs+l)_ 2 %(n §— 2)(”‘ —8— )
= '=Zl $(t—2)(t—1) = }(n—1)(n—2)(n—3).

Now consider the case when k = rs+twhere 0 < s < ®—1and0 <t <.
We have

by =n—2— [sp+£p] - [sq{t;tq] - [—8(p+q4 1)—£(p+q—— 1)]

=n-s—2— [fp] - [;q] - [—;(P-HI—— 1)]-
But

[;p] + [;tq] + [—;’(p+q— 1)] = [—;p+ [;tp] —;tq-l- [;tq] +;t]

is of the form [z4+y+2]
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ON THE VOLUME OF LATTICE POLYHEDRA 393
where —l<z<0, —1<y<g0, 0<z<l,

and so takes one of the values —2, —1, or 0. We determine the precise
value by use of our assumption that 7, is a fundamental L-tetrahedron
and so contains no point of L other than the vertices. By the special cases
of the above result with

n=1 and k=t

and with n=1 and k=1r—t

the numbers of points of L in 7,0on the planesz = tand z = r—t are }{(l+1)
and $I'(I'+1) respectively, where

R R

and V= —1—[17;_—!10]—~[T%?q]——[—r—:—‘(p—l-q—l)]-
Since there are no such points we must have

l=0or —1,
and I!=10or —1.

But as (p,7) = 1, (¢,7) = 1, and (p+¢—1,7) = 1, while 0 < ¢t < 7, none
of the ratios PR :

. L t —1
~P,_g or —(p+g—1)
can be integers. Hence

e R IS
— [—;(P-’r(!—l)] — [—(p+q—1)+;t(p+q—l)]

= —2—p+1—g+1+(p+g—1)+1= 0.
Consequently we must have [ = I’ = 0. Thus

¢ t t
[;p]+[;q]+l—;(p+q—l)] = —1
and l, =n—s—1 when k = rs+t.

So the number of points of L in the interior of =, lying on the planes of
the form z = rs4f where 0 < s <n—land 0 <t < 7is

ZZ_: :g %lrs-!-t(lrﬁ-l‘*‘l) = (r—l) "21 %(n—S—l)(n—s)

(r—1) ﬁf tt—1) = Jr—1)(n-+1)n(n—1).
01 =
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304 . J. E. REEVE
Thus ¥, (7,) = ‘F('r,,) = }(n—1)}{(n—2)(n—3)+(r—1)n(n+1)}

.= }(n—1){rn*4-(r—6)n- 6}
.a8 required.

It is perhaps worth remarking that if we retamed the assumption that

() =1, (g,7) = 1:" and (p+g—1,7)=1,
but replaced the assumption that there is no point of L in the interior of
70, by the assumption that % points of L lie in the interior of 7,, then a
refinement of the above argument would lead to the formula
Wu(ro) = $(n—1)}{rn®+(r—6)n+6}+hn;

a result which is clearly consistent with the formula (4).

6. Concluding remarks

We conclude this paper with a brief consideration of the possibility of
extending our results to polyhedra in space of dimension greater than three.

Let us suppose for a moment that in proving Theorem II we had started
with the assumption that the volume V(II) of an L-polyhedron IT could
be determined by a relation of the form

V(IT) = aL,(IN)+bL(I)+cL, () +dL(M)+f N(ID+-gN(I),

and that we had set out to find the values of the constants a, b, ¢, d, f,
and g. We should have been led, by considering the additive property of ¥,
to the conclusion that

{(a+2¢) Ly (m)+(b+2d) L(m)+ (f+29)N (m)}| _ 0
—{eLy(m*)+-d L(n*)+gN(n*)}

= and =* having here the same significance as they did previously. An

b}

obvious way in which to satisfy this condition would be in the first place

to impose the conditions
a+2c = b+-2d = f+29 = 0,

and then to determine the ratios of the constants ¢, d, and ¢ so that the
second bracket in the above expression vanished; the remaining constant
of proportionality could then be determined by using the condition that
the function V as defined above actually gives the volume of some par-
ticular polyhedron, e.g. some fundamental L-tetrahedron. Of course, there
is no evidence on the face of it that this procedure will in fact lead us to a
formula of the type for which we are looking, but in the case in question
of L-polyhedra in three dimensions it does in fact do so. Now the success of
this method depends, amongst other things, upon the existence of a set of
ratios of the constants ¢, d, and g such that the expression

oL, (m*)+dL(z*)+gN(m*)
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ON THE VOLUME OF LATTICE POLYHEDRA 395

vanishes for an arbitrary singular L-path 7*. These ratios exist because

L, (7*) and L(=*) may be used in effect to count the respectivé numbers
of 0- and 1<simplexes in a covering of #* (whose Euler—Poincaré charac-
teristic is N(7*)) by a simplicial complex whose 1-simplexes are all L-
segments containing no points of L in their interiors.

Suppose now that we are dealing with a lattice polyhedron in some space
of dimension & greater than three. We shall be led, if we carry out an
investigation analogous to that just described, to look for a means of
counting the numbers of simplexes of various dimension in a simplicial
complex of dimension k—2. The obvious way in which to do this will be
to introduce not a single additional lattice L, but a number of distinct
such lattices. Thus in the case of a four-dimensional polyhedron we might
hope to find a formula for the volume involving just two additional lattices ;
for, amongst other things, this would involve obtaining an expression for
the Euler-Poincaré characteristic of a two-dimensional simplicial complex
K in terms of the numbers of points common to K and each of these lattices,
and an example of such a relation is the following

‘ N(K) = —3L(K)+3Ly(K)— Ly(K). (11)
[Added in proof, 11.3.57. If one carries through the procedure outlined
above in this case, determining the final constant of proportionality by
. making the resulting formula valid for the fundamental parallelepiped of
the integer lattice L, one obtains, as a conjectured formula for the
‘volume V(I1) of the polyhedron IT in four dimensions, the equation
72V/(IT) = 2(3L(IT)—3Ly(IT) + Ly(IT) + N (T)}—
| —{BL(T) —3Ly(T) + Ly(M) + N (M)},

A similar formula may be obtained using lattices L,, and L,, m and n
being any two distinct integers greater than unity, in place of L, and
L,, the success of the procedure up to this point not depending upon the
fact that 2 and 3 are mutually prime.]

Expressions similar to (11), involving three additional lattices, may be
found for three-dimensional simplicial complexes. Thus it would seem that
for the cases of lower dimension at least the task of proving the additive
‘property of a function V derived in the way indicated above would be fairly
straightforward, though we should still be far from finally establishing its
general validity. :

Finally, I should like to express my gratitude to Professor R. Rado, to
whom I am much indebted for advice and encouragement in the prepara-
tion of this paper.
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